NAVER x Changwon NER
NAVER x Changwon NER is a dataset released by lovit@github. It provides the Korean Wikipedia in a text format. Data specification is as follows.
- author: Naver + Changwon National University
- repository: https://github.com/naver/nlp-challenge/tree/master/missions/ner
- reference: http://air.changwon.ac.kr/?page_id=10
- size:
- train: 90,000 examples
Data structure is as follows:
Attributes | Property |
---|---|
text | a string of space delimited words |
words | a word sequence |
tags | a sequence of entity tags of words |
1. Using in Python
You can download and load the corpus after executing your Python console.
Downloading the corpus
You can download NAVER x Changwon NER corpus into your local directory with the following Python codes.
from Korpora import Korpora
Korpora.fetch("naver_changwon_ner")
By default, the corpus is downloaded to a Korpora directory within the user’s root directory (~/Korpora
). If you wish to download the corpus to another directory,add root_dir=custom_path
argument to the fetch method.
When the fetch method is executed with force_download=True
argument, it ignores the existing corpus in the local directory and re-downloads the corpus. The default value of force_download
is False
.
Loading the corpus
You can load NAVER x Changwon NER corpus from your Python console with the following codes. If the corpus does not exist in the local directory, it is also downloaded as well.
from Korpora import Korpora
corpus = Korpora.load("naver_changwon_ner")
You can also load the corpus as follows. The output of these codes is identical to that of previous codes.
from Korpora import NaverChangwonNERKorpus
corpus = NaverChangwonNERKorpus()
If you use either one of these previous examples, you can load the corpus into the variable corpus
. train
refers to the training dataset of NAVER x Changwon NER corpus, and you can check its first training instance as follows.
>>> corpus.train[0]
WordTag(text='비토리오 양일 만에 영사관 감호 용퇴, 항룡 압력설 의심만 가율 ', words=['비토리오', '양일', '만에', '영사관', '감호', '용퇴,', '항룡', '압력설', '의심만', '가율'], tags=['PER_B', 'DAT_B', '-', 'ORG_B', 'CVL_B', '-', '-', '-', '-', '-'])
>>> corpus.train[0].text
비토리오 양일 만에 영사관 감호 용퇴, 항룡 압력설 의심만 가율
>>> corpus.train[0].words
['비토리오', '양일', '만에', '영사관', '감호', '용퇴,', '항룡', '압력설', '의심만', '가율']
>>> corpus.train[0].tags
['PER_B', 'DAT_B', '-', 'ORG_B', 'CVL_B', '-', '-', '-', '-', '-']
By executing the get_all_words
method, you can access all words (word sequences) within NAVER x Changwon NER corpus.
>>> corpus.get_all_words()
[['비토리오', '양일', '만에', '영사관', '감호', '용퇴,', '항룡', '압력설', '의심만', '가율'], ... ]
By executing the get_all_tags
method, you can access all tags (a sequence of entity tags of words) within the corpus.
>>> corpus.get_all_tags()
[['PER_B', 'DAT_B', '-', 'ORG_B', 'CVL_B', '-', '-', '-', '-', '-'], ... ]
By executing the get_all_texts
method, you can access all texts (a string of space delimited words) within the corpus.
>>> corpus.get_all_texts()
['비토리오 양일 만에 영사관 감호 용퇴, 항룡 압력설 의심만 가율 ', ... ]
2. Using in a terminal
You can directly download the corpus without executing Python console. To do so, use the following command.
korpora fetch --corpus naver_changwon_ner
By default, the corpus is downloaded to a Korpora directory within the user’s root directory (~/Korpora
). If you wish to download the corpus to another directory,add --root_dir custom_path
argument to the fetch command.
If you add --force_download
argument when executing the fetch command in the terminal, it ignores the existing corpus in the local directory and re-downloads the corpus.